Exercise image

Let's first analyze what the problem is asking.

We are to find the value of the expression:

3sin2α+10+3cos2α3\sin^2{\alpha} + 10 + 3\cos^2{\alpha}

Let’s develop a step-by-step plan to solve it:

Step 1: Notice the Pythagorean identity involving the sine and cosine functions:

sin2α+cos2α=1\sin^2{\alpha} + \cos^2{\alpha} = 1

This will allow us to combine like terms.

Step 2: Rewrite the original expression by grouping the sine and cosine terms together:

3sin2α+3cos2α+103\sin^2{\alpha} + 3\cos^2{\alpha} + 10

Step 3: Factor out the common factor of 3:

3(sin2α+cos2α)+103(\sin^2{\alpha} + \cos^2{\alpha}) + 10

Step 4: Use the Pythagorean identity to substitute sin2α+cos2α\sin^2{\alpha} + \cos^2{\alpha} with 1:

3×1+103 \times 1 + 10

Step 5: Calculate the final value:

3+10=133 + 10 = 13

Now, let's confirm our computation. The value of the expression is:

3sin2α+10+3cos2α=3(sin2α+cos2α)+10=3×1+10=133\sin^2{\alpha} + 10 + 3\cos^2{\alpha} = 3(\sin^2{\alpha} + \cos^2{\alpha}) + 10 = 3 \times 1 + 10 = 13

The answer is 1313.