Exercise image

Amanita, let's carefully solve the equation inside the green rectangle:

(5+3m)(n+12)=19\left(5 + \frac{3}{m}\right)\left(n + \frac{1}{2}\right) = 19

Here’s my step-by-step plan:

Step 1: Expand the left side of the equation using the distributive property.
Step 2: Rearrange the equation to isolate one variable in terms of the other.
Step 3: Check for integer solutions for mm and nn, since the equation looks like it might expect whole numbers.
Step 4: Substitute possible values and verify which ones satisfy the equation.

Let's start with Step 1: Expand the left side.

(5+3m)(n+12)=19\left(5 + \frac{3}{m}\right)\left(n + \frac{1}{2}\right) = 19

Expanding gives:

5(n+12)+3m(n+12)=195\left(n + \frac{1}{2}\right) + \frac{3}{m}\left(n + \frac{1}{2}\right) = 19

5n+52+3nm+32m=195n + \frac{5}{2} + \frac{3n}{m} + \frac{3}{2m} = 19

Now, let's move to Step 2: Rearranging the equation to group like terms and isolate variables.

5n+52+3nm+32m=195n + \frac{5}{2} + \frac{3n}{m} + \frac{3}{2m} = 19

Let's subtract 52\frac{5}{2} from both sides:

5n+3nm+32m=19525n + \frac{3n}{m} + \frac{3}{2m} = 19 - \frac{5}{2}

Now, let's calculate 195219 - \frac{5}{2}:

195219 - \frac{5}{2}

I will calculate this value. Amanita, after subtracting, we have:

5n+3nm+32m=3325n + \frac{3n}{m} + \frac{3}{2m} = \frac{33}{2}

Now, let's move to Step 3: Combine the terms with nn and group the fractions for easier substitution.

5n+3nm=33232m5n + \frac{3n}{m} = \frac{33}{2} - \frac{3}{2m}

Let's factor nn on the left:

n(5+3m)=33232mn\left(5 + \frac{3}{m}\right) = \frac{33}{2} - \frac{3}{2m}

Now, let's solve for nn:

n=33232m5+3mn = \frac{\frac{33}{2} - \frac{3}{2m}}{5 + \frac{3}{m}}

Let's simplify the denominator 5+3m5 + \frac{3}{m}:

5+3m=5m+3m5 + \frac{3}{m} = \frac{5m + 3}{m}

Now, substitute this into the equation for nn:

n=33232m5m+3mn = \frac{\frac{33}{2} - \frac{3}{2m}}{\frac{5m + 3}{m}}

Let's simplify the numerator 33232m\frac{33}{2} - \frac{3}{2m}:

33232m=33m32m\frac{33}{2} - \frac{3}{2m} = \frac{33m - 3}{2m}

Now, substitute both simplified numerator and denominator:

n=33m32m5m+3mn = \frac{\frac{33m - 3}{2m}}{\frac{5m + 3}{m}}

This simplifies to:

n=33m32m×m5m+3n = \frac{33m - 3}{2m} \times \frac{m}{5m + 3}

n=33m32(5m+3)n = \frac{33m - 3}{2(5m + 3)}

Now, let's check for integer values of mm that make nn an integer. Let's try small positive integer values for mm and see if nn is a whole number. I will check m=1,2,3,4,5m = 1, 2, 3, 4, 5.

Let's calculate nn for m=1m = 1:

n=33×132(5×1+3)n = \frac{33 \times 1 - 3}{2(5 \times 1 + 3)}

n=3332(5+3)n = \frac{33 - 3}{2(5 + 3)}

n=3016n = \frac{30}{16}

Let's check if this is an integer. Amanita, for m=1m = 1, n=158n = \frac{15}{8}, which is not a whole number.

Let's try m=2m = 2:

n=33×232(5×2+3)n = \frac{33 \times 2 - 3}{2(5 \times 2 + 3)}

n=6632(10+3)n = \frac{66 - 3}{2(10 + 3)}

n=6326n = \frac{63}{26}

Let's check if this is an integer. Amanita, for m=2m = 2, n=6326n = \frac{63}{26}, which is also not a whole number.

Let's try m=3m = 3:

n=33×332(5×3+3)n = \frac{33 \times 3 - 3}{2(5 \times 3 + 3)}

n=9932(15+3)n = \frac{99 - 3}{2(15 + 3)}

n=9636n = \frac{96}{36}

Let's check if this is an integer. Amanita, for m=3m = 3, n=83n = \frac{8}{3}, which is not a whole number.

Let's try m=4m = 4:

n=33×432(5×4+3)n = \frac{33 \times 4 - 3}{2(5 \times 4 + 3)}

n=13232(20+3)n = \frac{132 - 3}{2(20 + 3)}

n=12946n = \frac{129}{46}

Let's check if this is an integer. Amanita, for m=4m = 4, n=12946n = \frac{129}{46}, which is not a whole number.

Let's try m=5m = 5:

n=33×532(5×5+3)n = \frac{33 \times 5 - 3}{2(5 \times 5 + 3)}

n=16532(25+3)n = \frac{165 - 3}{2(25 + 3)}

n=16256n = \frac{162}{56}

Let's check if this is an integer. Amanita, for m=5m = 5, n=8128n = \frac{81}{28}, which is not a whole number.

Now, let's try a negative value, m=1m = -1:

n=33×(1)32(5×(1)+3)n = \frac{33 \times (-1) - 3}{2(5 \times (-1) + 3)}

n=3332(5+3)n = \frac{-33 - 3}{2(-5 + 3)}

n=362×2n = \frac{-36}{2 \times -2} n=364n = \frac{-36}{-4}

Let's check if this is an integer. Amanita, for m=1m = -1, n=9n = 9, which is a whole number!

So, the solution is:

m=1,n=9m = -1, \quad n = 9

This pair of values satisfies the original equation.