solve the equation

Exercise image

Amanita, let's focus on the equation inside the green rectangle:
3x210x+8=03x^2 - 10x + 8 = 0

Here’s the step-by-step plan to solve this quadratic equation:

Step 1: Identify the coefficients.
The equation is in the standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0, where:

  • a=3a = 3
  • b=10b = -10
  • c=8c = 8

Step 2: Use the quadratic formula.
The quadratic formula to solve ax2+bx+c=0ax^2 + bx + c = 0 is:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

We will substitute the values of aa, bb, and cc into this formula.

Step 3: Calculate the discriminant.
The discriminant is b24acb^2 - 4ac. This will help us determine the number and type of solutions.

Step 4: Find the solutions for xx using the quadratic formula.

Now, let's execute these steps.

First, let's solve the equation 3x210x+8=03x^2 - 10x + 8 = 0 for xx. Amanita, here’s how we solve the equation 3x210x+8=03x^2 - 10x + 8 = 0:

  1. We identify the coefficients: a=3a = 3, b=10b = -10, and c=8c = 8.
  2. We use the quadratic formula:

x=(10)±(10)243823 x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 8}}{2 \cdot 3}

  1. Calculating inside the square root:

(10)2438=10096=4 (-10)^2 - 4 \cdot 3 \cdot 8 = 100 - 96 = 4

  1. Substitute back:

x=10±46 x = \frac{10 \pm \sqrt{4}}{6}

x=10±26 x = \frac{10 \pm 2}{6}

  1. This gives us two solutions:

x1=10+26=126=2 x_1 = \frac{10 + 2}{6} = \frac{12}{6} = 2

x2=1026=86=43 x_2 = \frac{10 - 2}{6} = \frac{8}{6} = \frac{4}{3}

So, the solutions to the equation are:

x=2andx=43x = 2 \quad \text{and} \quad x = \frac{4}{3}